Preprint 1996-032

Error bounds for a Deterministic Version of the Glimm Scheme

A. Bressan and A. Marson


Abstract: Consider the hyperbolic system of conservation laws $u_t F(u)_x=0. Let $u$ be the unique viscosity solution with initial condition $u(0,x)=\bar u(x)$ and let $u^\varepsilon$ be an approximate solution constructed by the Glimm scheme, corresponding to the mesh sizes $\Delta x,\Delta t=O(\Delta x). With a suitable choise of the sampling sequence, we prove the estimate $$ \left\Vert u^\varepsilon(t,\cdot)-u(t,\cdot) \right\Vert_1=o(1)\cdot\sqrt{\Delta x}\vert\ln\Delta x\vert. $$


Paper:
Available as PostScript
Title:
Error bounds for a Deterministic Version of the Glimm Scheme
Author(s):
A. Bressan, mailto:bressan@sissa.it
A. Marson, mailto:marson@bsing.ing.unibs.it
Submitted by:
mailto:marson@bsing.ing.unibs.it September 6 1996.


[ 1996 Preprints | All Preprints | Preprint Server Homepage ]
(c) The copyright for the following documents lies with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use.

mailto:conservation@math.ntnu.no
Last modified: Fri Sep 6 16:26:23 1996
Сайт управляется системой uCoz